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Abstract. We consider equilibrium problems in the framework of the formulation proposed
by Blum and Oettli. We establish a new dual formulation for this equilibrium problem using
the classical Fenchel conjugation, thus generalizing the classical convex duality theory for
optimization problems.
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1. Introduction

The problem of interest, which we call Equilibrium Problem, abbreviated
(EP), is defined as follows:

(EP): Find x ∈K such that f (x, y)�0 for all y ∈K, (1)

where

1. K is a non-empty convex subset of a non-trivial real locally convex
Hausdorff topological vector space X,

2. f : X ×X → R ∪ {+∞,−∞} is a function which satisfies the following
properties:

P1: f (x, x)=0 for each x ∈K,

P2: For every x ∈K, the function fx :=f (x, ·) :X→R∪{+∞} is con-
vex and lower semicontinuous and there exists yx ∈ K such that
f (x, yx) < +∞ and either yx belongs to the interior of K or fx

is continuous at yx .

This problem was considered in the past, with slight variations in the
assumptions, under various headings, for instance in Refs. [1–12]. The pur-
pose of these works was to extend results concerning particular problems.

�This work was begun when the first author was visiting the Instituto de Matemática y Ciencias
Afines (Lima-Peru) in July 2002 and was finished when the second author was visiting the Centre de
Recerca Matemàtica (Bellaterra-Spain) in September 2002.
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For example, the work of Brezis, Nirenberg and Stampacchia [5] extended
results concerning variational inequalities, which corresponds to the case
where f (x, y)=〈Ax,y −x〉 and A is a monotone operator (see [5, pp. 296–
297]). Blum and Oettli [4] pointed out that (EP) includes, as particular
cases, optimization problems, Nash equilibria problems, complementarity
problems, fixed point problems and variational inequality problems. Iusem
and Sosa [8] observed that some vector optimization problems are also par-
ticular cases of (EP). Moreover, (EP) unifies these problems in a convenient
way, in the sense that results obtained for some of these problems can be
extended to the general formulation of (EP) (with suitable modifications, of
course).

Duality for equilibrium problems was first studied in Ref. [9]. The
schemes proposed in that paper are extensions of a classical duality theory
for variational inequalities. In contrast, our dual approach to equilibrium
problems is in the spirit of convex optimization and in fact extends classi-
cal convex duality.

2. Preliminaries

Given a lower semicontinuous convex function h : X → R ∪ {+∞}, its con-
jugate function h∗ :X∗ →R∪{+∞} is defined by

h∗(x∗) := sup
y∈X

{〈x∗, y〉−h(y)}.

The subdifferential of h at x ∈dom(h) is defined by

∂h(x) :={x∗ ∈X∗ : 〈x∗, y −x〉+h(x)�h(y) ∀y ∈X}.

We denote by iK :X∗ →R∪{−∞} the function defined by

iK(x∗) := inf
x∈K

〈x∗, x〉

and by

K∞ ={v ∈X :K +v ⊂K}

the recession cone of K. We shall also consider the set

K∗ ={x∗ ∈X∗ : iK(x∗)>−∞}.

Since K∗ is the effective domain of the concave function iK, it is a convex
set.
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LEMMA 2.1.

K+ ⊂K∗ ⊂ (K∞)+.

where K+ := {x∗ ∈X∗ : 〈x∗, x〉�0 ∀x ∈K}

Proof. The first inclusion is evident. For the second one, take v ∈
K∞, x̄ ∈ K and x∗ ∈ K∗; then x̄ + tv ∈ K∀t > 0. So 〈x∗, x̄ + tv〉 � iK(x∗) >

−∞∀t > 0. Hence, t〈x∗, v〉� iK(x∗)−〈x∗, x̄〉>−∞∀t > 0 and thus 〈x∗, v〉�
0∀v ∈K∞, i.e. x∗ ∈ (K∞)+.

LEMMA 2.2. For every x∗ ∈K∗, one has

iK(x∗)− inf
x∈K

f ∗
x (x∗)� sup

x∈K

inf
y∈K

f (x, y)�0,

and hence

inf
x∈K

f ∗
x (x∗)� iK(x∗)>−∞.

Proof. From Fenchel inequality, ∀x, y ∈ K one has 〈x∗, y〉 − f ∗
x (x∗) �

f (x, y). So, iK(x∗) − f ∗
x (x∗) = inf y∈K〈x∗, y〉 − f ∗

x (x∗) � inf y∈K f (x, y) �
f (x, x) � 0. The statement follows by taking suprema with respect to
x ∈K.

3. The Dual Problem

In this section we will define a dual problem to (EP). Motivated by Lemma
2.2, we now consider the function g :K∗ →R∪{−∞} given by

g(x∗) := iK(x∗)− inf
x∈K

f ∗
x (x∗). (2)

From Lemma 2.2, the following result immediately follows.

LEMMA 3.1. The function g is well defined and non-positive everywhere.

We introduce the dual to the original EP as the following optimization
problem:

(D) : maximize g(x∗). (3)

The next theorem relates the solutions to the EP to the optimal solutions
of its dual.
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THEOREM 3.1. If x̄ ∈K, the following statements are equivalent:

1. x̄ is a solution of (EP).
2. There exists x∗ ∈K∗ such that f ∗

x̄ (x∗)= iK(x∗).

Hence, if (EP) has a solution, then (D) has an optimal dual solution and
its optimal value is 0.

Proof. If x̄ is a solution of (EP), then fx̄(x̄)= 0 = miny∈K fx̄(y). So, by
the Pshenichny-Rockafellar Theorem [14, Theorem. 2.9.1], there exists x∗ ∈
∂fx̄(x̄) ∩ (−NK(x̄)),NK(x̄) denoting the normal cone to K at x̄, and thus
f ∗

x̄ (x∗) = fx̄(x̄) + f ∗
x̄ (x∗) = 〈x∗, x̄〉 = iK(x∗). Notice that the latter equality

implies that x∗ ∈K∗.
To prove the converse, let y ∈K; then f (x̄, y)=fx̄(y)� 〈x∗, y〉−f ∗

x̄ (x∗)=
〈x∗, y〉− iK(x∗)�0. Therefore, x̄ is a solution of (EP).

By the implication 1. ⇒ 2., if (EP) has a solution x̄, there exists x∗ ∈K∗

such that

0= iK(x∗)−f ∗
x̄ (x∗)� iK(x∗)− inf

x∈K
f ∗

x (x∗)=g(x∗).

From Lemma 3.1, it follows that x∗ is an optimal dual solution and
g(x∗)=0.

The preceding theorem shows that the optimal dual value is equal to 0
whenever (EP) has a solution. The converse to this statement is not true
in general; however we shall prove next that the optimal dual value is 0 if,
and only if, the equilibrium problem has arbitrarily good approximate solu-
tions. To give a precise meaning of the notion of an approximate solution
of (EP), for ε >0 we define x ∈K to be an ε−solution to (EP) if it satisfies

f (x, y)�−ε for all y ∈K.

THEOREM 3.2. The optimal value of problem (D) is 0 if and only if, for
all ε >0, there is an ε−solution to (EP).

Proof. Assume first that the optimal dual value is 0, and let ε >0. Take
x∗ ∈K∗ such that g(x∗)�−ε/2 and x ∈K such that f ∗

x (x∗)� inf z∈K f ∗
z (x∗)+

ε/2. For every y ∈K, one has

f (x, y)� 〈x∗, y〉−f ∗
x (x∗)� iK(x∗)− inf

z∈K
f ∗

z (x∗)− ε/2=g(x∗)− ε/2

�−ε,

which proves that x is an ε−solution to (EP).
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To prove the converse, let ε > 0 and take an ε−solution x ∈K to (EP).
Since fx(x) = 0 � inf y∈K fx(y) + ε, using [14, Theorem 2.8.3] we can eas-
ily prove that ∂ε1fx(x) ∩ (−N

ε2
K (x)) �= ∅ for some ε1, ε2 � 0 with ε1 + ε2 = ε,

the sets in the intersection being the approximate subdifferential and the
approximate normal cone defined by

∂ε1fx(x) :={x∗ ∈X∗ : 〈x∗, y −x〉− ε1 �fx(y) ∀y ∈X}

and

N
ε2
K (x) :={x∗ ∈X∗ : 〈x∗, y −x〉− ε2 �0 ∀y ∈K}

={x∗ ∈X∗ : iK(−x∗)�−〈x∗, x〉− ε2},

respectively. For any x∗ ∈ ∂ε1fx(x)∩ (−N
ε2
K (x)), we have

g(x∗)= iK(x∗)− inf
z∈K

f ∗
z (x∗)� 〈x∗, x〉− ε2 −f ∗

x (x∗)�−ε.

Since ε >0 can be taken arbitrarily small and g is non-positive, this proves
that the optimal value of problem (D) is 0.

As a consequence of Theorem 3.2, a necessary condition for the equilib-
rium problem to have a solution is the optimal dual value to be 0. In fact,
this also follows from Theorem 3.1, which implies the existence of an opti-
mal dual solution, too. Indeed, if x∗ ∈K∗ is related to a solution x̄ ∈K of
(EP) as in Theorem 3.2, one has

g(x∗)= iK(x∗)− inf
x∈K

f ∗
x (x∗)� iK(x∗)−f ∗

x̄ (x∗)=0,

whence, by the non-positivity of g, x∗ is an optimal dual solution. Thus,
the combination of Theorems 3.1 and 3.2 suggests the following dual
approach to find all solutions to the equilibrium problem. First, solve
problem (D). In the case when there is no optimal solution or the opti-
mal value is negative, (EP) has no solution. Otherwise, computing all opti-
mal dual solutions x∗ ∈K∗, which satisfy g(x∗)=0, and finding, for each of
them, all solutions x̄ ∈K to the associated equation f ∗

x̄ (x∗)= iK(x∗) would
yield the solution set of (EP). Notice that, for x̄ ∈K, this equality implies
that x∗ ∈−NK (x) , since 〈x∗, x〉�fx (x)+f ∗

x (x∗)= iK(x∗), so that the solu-
tion to that equation is among the minimizers of the continuous linear
functional x∗ over K. In particular, if x∗ has a unique minimizer over K

(which is necessarily the case if K is strictly convex, that is, if its bound-
ary contains no line segments, and x∗ �= 0), this unique minimizer is the
unique solution to the equilibrium problem associated to x∗ provided that
a solution to (EP) is known to exist. Thus, under these assumptions, if
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x∗ ∈K∗ satisfying g(x∗)= 0 is unique and x∗ �= 0, that unique minimizer is
the unique solution to the equilibrium problem.

Let us now examine the application of this method to the convex mini-
mization problem when it is formulated as an equilibrium problem. As in
Ref. [8], this is achieved by setting f (x, y) :=h(y)−h(x)∀x ∈ dom(h),∀y ∈
X and f (x, y) := +∞ otherwise, so that f ∗

x (x∗) = h∗(x∗) + h(x). Therefore
the dual objective function is given by g(x∗)= iK(x∗)−h∗(x∗)− infx∈Kh(x).
Thus, Problem (D) is equivalent to maximizing iK(x∗)−h∗(x∗) over K∗, a
classical dual in convex optimization. According to the method described
at the end of the preceding section, once an optimal solution x∗ ∈ K∗ is
found one has to solve the equation f ∗

x (x∗)= iK(x∗). The following result
gives an interpretation of this equation in the context of the convex mini-
mization problem.

PROPOSITION 3.1. For every x ∈K and x∗ ∈X∗, the following statements
are equivalent:

1. f ∗
x (x∗)= iK(x∗).

2. h(x)= iK(x∗)−h∗(x∗).
3. x∗ ∈ ∂h(x)∩ (−NK(x)).

Proof. The equivalence between the first two statements is evident. To
prove the equivalence between the last two, assume first that x satisfies
h(x)= iK(x∗)−h∗(x∗). Then

iK(x∗)� 〈x∗, x〉�h∗(x∗)+h(x)= iK(x∗),

whence

iK(x∗)=〈x∗, x〉=h∗(x∗)+h(x).

The first of these two equalities means that x∗ ∈ −NK(x), whilst the sec-
ond one says that x∗ ∈∂h(x). The converse implication follows by using this
same argument: If x∗ ∈ ∂h(x)∩ (−NK(x)) then

h(x)=〈x∗, x〉−h∗(x∗)= iK(x∗)−h∗(x∗).

The second statement in the preceding proposition tells us that the
optimal value of the convex minimization problem is iK(x∗) − h∗(x∗), so
that it is determined by any optimal dual solution. Once it is known, find-
ing the optimal solutions reduces to solving an equation. The third state-
ment interprets the optimal dual solutions in terms of a classical optimality
condition.
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To conclude, we shall illustrate our duality theory by applying it to an
example of equilibrium problem.

Let U ⊂R
m and V ⊂R

n be non-empty convex polyhedra sets; let L :U ×
V →R be the Lagrangian defined by

L(x, y) :=〈p,x〉+ 1
2 〈x,Px〉+〈q, y〉− 1

2 〈y,Qy〉−〈y, Sx〉,
where p ∈R

m, q ∈R
n, S is a real matrix of order (n,m), and P (resp. Q) is

a real symmetric positive definite matrix of order (m,m) (resp. (n, n)). We
are interested in the following problem:

Find (x̄, ȳ)∈U ×V such that

L(x̄, y)�L(x̄, ȳ)�L(x, ȳ) for all (x, y)∈U ×V. (4)

Saddle point problems are particular cases of the equilibrium problem.
Indeed, let us consider K := U × V,u := (x, y) and v := (w, z), and let us
define the function f :K ×K →R by

f (u, v) :=L(w,y)−L(x, z).

We now consider the problem

(EP) : Find ū∈K such that f (ū, v)�0 for all v ∈K. (5)

PROPOSITION 3.2. ū := (x̄, ȳ) is a solution to (5) if, and only if, (x̄, ȳ) is
a solution to (4).

The objective function of the dual problem is g :U∗ ×V ∗ −→R∪{−∞} ,

given by

g
(
x∗, y∗)= iU

(
x∗)+ iV

(
y∗)− inf

x∈U
(−Lx)

∗ (
y∗)− inf

y∈V

(
Ly

)∗ (
x∗) ;

here Lx : V → R and Ly : U → R denote the functions defined by Lx (y) =
L(x, y)=Ly (x).

In our case, setting r := (−p,q),

A :=
(

P 0
0 Q

)
and B :=

(
0 St

−S 0

)

(we notice that A is a symmetric positive definite matrix and Bt =−B), it
is easy to check that

f (u, v)=〈r, u−v〉− 1
2 〈u,Au〉+ 1

2 〈v,Av〉+〈u,Bv〉,
(−Lx)

∗ (
y∗)= 1

2

〈
y∗ +q −Sx,Q−1 (

y∗ +q −Sx
)〉+〈p,x〉+ 1

2 〈x,Px〉
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and

(
Ly

)∗ (
x∗)= 1

2

〈
x∗ −p −Sty,P −1 (

x∗ −p −Sty
)〉−〈q, y〉+ 1

2 〈y,Qy〉.

Since the functions (x, y∗) �−→ (−Lx)
∗ (y∗) and (x∗, y) �−→ (Ly)∗ (x∗) are

(jointly) convex in (x, y∗) and (x∗, y) , respectively, the dual objective func-
tion g is concave, so that problem (D) can be easily solved in this case. By
Theorem 3.1, (x̄, ȳ) is a saddle point of L if and only if there exists an
optimal solution (x∗, y∗) to (D) such that

1
2

〈
y∗ +q −Sx,Q−1 (

y∗ +q −Sx
)〉+〈p,x〉+ 1

2 〈x,Px〉
+ 1

2

〈
x∗ −p −Sty,P −1 (

x∗ −p −Sty
)〉−〈q, y〉+ 1

2 〈y,Qy〉
= iU

(
x∗)+ iV

(
y∗) . (6)

One can easily verify that, if g (x∗, y∗)=0, (x̄, ȳ) satisfies (6) if and only
if x̄ and y are global minimizers of the quadratic functions

x �−→ 1
2

〈
y∗ +q −Sx,Q−1 (

y∗ +q −Sx
)〉+〈p,x〉+ 1

2 〈x,Px〉

and

y �−→ 1
2

〈
x∗ −p −Sty,P −1 (

x∗ −p −Sty
)〉−〈q, y〉+ 1

2 〈y,Qy〉,

respectively.
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